Abbreviations used in this document:

AACSBAssociation to Advance Collegiate Schools of Business
ACMAssociation for Computing Machinery
AISAssociation of Information Systems
AoLAssessment of Learning
CBECollege of Business and Economics
CSISComputer Science and Information Systems
CSComputer Science
ISInformation Systems
MSCSMaster of Science in Computer Science
UWRFUniversity of Wisconsin-River Falls

The Computer Science and Information Systems Department offers a Master of Science in Computer Science (MSCS) degree. The MSCS program is a flexible and dynamic program that focuses on current and specialized computer science topics as well as management and leadership training. Whether the students are IT professionals or recent computer science graduates, they will find great value in this advanced degree. Through small class sizes, exceptional faculty and current topics, the program will prepare the students to be leaders in the IT industry.

Section 1) Program Learning Outcomes

Master of Science in Computer Science Program Mission and Learning Outcomes

Mission

The mission of the MSCS program is to prepare graduates with skills in current technologies and methodologies as well as help them develop skills to analyze, design, develop, and manage projects related to data science, machine learning, software engineering, information security, mobile computing and cloud computing. This program is grounded in understanding of the theory and methods of computer science.

Students in the MSCS program are expected to acquire knowledge of current software development tools, develop skills in analysis, design, and development of software systems and are expected to develop professional skills needed to lead projects in the software industry or go on to a PhD program.

Learning Outcomes

The following tables lists the learning outcomes expected from every MSCS graduate. All learning outcomes are measurable and the artifacts used for measurements are described later in this document.

<table>
<thead>
<tr>
<th>CS-LO1</th>
<th>A graduate will be able to develop and deploy cloud-based solutions and apply best security practices.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-LO2</td>
<td>A graduate will understand theoretical and practical aspects of distributed and mobile computing and will be able to develop mobile software solutions.</td>
</tr>
<tr>
<td>CS-LO3</td>
<td>A graduate will be able to apply data science and machine learning techniques to practical problems in the area of big data.</td>
</tr>
<tr>
<td>CS-LO4</td>
<td>A graduate will have skills in business management, leadership, and technology innovation.</td>
</tr>
</tbody>
</table>

Table 1: MSCS Program Learning Outcomes
Learning Outcomes and External Stakeholders:

Computer Science - Every six years the CSIS Department reviews the MSCS program’s learning outcomes and develops curricular recommendations. To help compare the current curriculum with the latest trends in computing, the CSIS Department also seeks recommendations from external stakeholders. Collectively, all MSCS learning outcomes are impacted by this practice.

Learning Outcomes and UWRF Strategic Goals

Distinctive Academic Excellence

Courses are offered in technology-enhanced classrooms, promoting hands-on, interactive learning of program objectives. A strong practicum program offering opportunities for students to be engaged in out-of-classroom learning activities. These support the UWRF’s strategic initiatives related to Active Learning.

In support of UWRF’s strategic initiatives related to research, MSCS students have the option to work on a research project and write a report under the supervision of a faculty advisor.

Also, admission to the MSCS program is not unconditional. In order to be admitted to the program, students must have successfully completed a bachelor’s degree in Computer Science or related field from an accredited university with a cumulative GPA meeting one of the following requirements:

- Undergraduate GPA of at least 2.75 (4-point scale); or
- Major GPA of at least 3.0 (4-point scale); or
- GPA of at least 3.0 (4-point scale) for no fewer than nine semester credits of graduate study from another accredited graduate institute.

Students with a bachelor’s degree in fields not closely related to computer science also may qualify with relevant work experience.

All students must have a basic foundation in the key undergraduate computer science courses of Programming I, Programming II, Object Oriented Programming, Database Management, Software Engineering, either through completed education or significant work experience.

If a student does not meet any of the above conditions, the chair of the Computer Science department can review the student’s education and experience and provide an appropriate assessment and plan of action to assist the student in developing the necessary skills and experience to prepare the student for successful admission to the MSCS program. For example, a student may complete an approved undergraduate computer science core foundation courses (or deficient part at UW-River Falls or another university).

Foundation courses at UWRF include the following (a passing grade in the following UWRF courses will meet the foundation course requirements): CSIS 161 (Programming I), CSIS 162 (Programming II), CSIS 235 (Object Oriented Programming), CSIS 333 (Database Management Systems), CSIS 343 (Software Engineering). Students may meet the foundation requirement by taking appropriate undergraduate or graduate courses at other universities.

Global Education and Engagement

By the technical nature of the discipline, there are no MSCS learning outcomes that are directly related to this goal. However, Computer Science and Information Systems are international disciplines with a defined set of international standards.

These standards relate to each learning outcome and are a source from which MSCS learning outcomes objectives are derived. Graduates have the opportunity for global engagement and to use their skills world-wide. In addition, the department has the opportunity to engage in global education through exchange programs. The department is constantly exploring options for expanding its international reach through exchange agreements with universities.
at an international level.

Innovation and Partnerships

Development of skills related each of to the MSCS Learning Outcomes are enhanced through department’s partnership with Microsoft and IBM and were a catalyst in the development of the Department’s learning outcomes. The Computer Science Department is a member of the Microsoft Developer Network Academic Alliance (MSDNAA), which provides students with free access to Microsoft operating systems and software development products. MSCS also works with IBM’s Academic Initiative, giving students access to software and curriculum materials from IBM. In addition, students have the option to engage in practicum activities. Collectively, all MSCS learning outcomes are impacted by these agreements. (See Table 1.)

Section 2) Where Learning Outcomes Are Being Achieved

The MSCS learning goals are developed in the classroom as well as through practicums or faculty advised research projects, along with out-of-classroom and extracurricular activities engaged by the students. The following sections list the MSCS required courses, out-of-classroom/extracurricular activities and demonstrate where the corresponding learning outcomes are achieved.

Course Work:

Computer Science required courses – 24 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSIS 630 Enterprise and Cloud Computing</td>
<td>3 Cr.</td>
</tr>
<tr>
<td>CSIS 631 Distributed and Mobile Computing</td>
<td>3 Cr.</td>
</tr>
<tr>
<td>CSIS 732 Information Security</td>
<td>3 Cr.</td>
</tr>
<tr>
<td>CSIS 733 Computing for Data Science and Big Data Analysis</td>
<td>3 Cr.</td>
</tr>
<tr>
<td>CSIS 634 Software Engineering and Design Patterns</td>
<td>3 Cr.</td>
</tr>
<tr>
<td>CSIS 735 Machine Learning and Knowledge Discovery</td>
<td>3 Cr.</td>
</tr>
<tr>
<td>CSIS 736 Technology Innovation, New Product Development</td>
<td></td>
</tr>
<tr>
<td>and Sustainability</td>
<td></td>
</tr>
<tr>
<td>CSIS 738 Practicum</td>
<td>3 Cr.</td>
</tr>
</tbody>
</table>

Table 2: Computer Science required courses

Graduate Management elective courses – 6 credits minimum or 2 courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNGT 700 Organizational Theory and Behavior</td>
<td>3 Cr.</td>
</tr>
<tr>
<td>MNGT 701 Leadership and Ethics</td>
<td>3 Cr.</td>
</tr>
<tr>
<td>MKTG 702 Strategic Marketing Management</td>
<td>3 Cr.</td>
</tr>
<tr>
<td>MNGT 703 Human Resources Management</td>
<td>3 Cr.</td>
</tr>
<tr>
<td>MNGT 705 Operations and Project Management</td>
<td>3 Cr.</td>
</tr>
<tr>
<td>FINC 732 Financial Management</td>
<td>3 Cr.</td>
</tr>
</tbody>
</table>

Table 3: Graduate Management elective courses

MSCS Map of Learning Outcomes

The following table shows where MSCS program learning outcomes are developed. The program does not assess at different levels, rather the program engages in selective assessment.
Learning Outcomes/Courses

<table>
<thead>
<tr>
<th></th>
<th>630</th>
<th>631</th>
<th>732</th>
<th>733</th>
<th>634</th>
<th>735</th>
<th>736</th>
<th>738</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-LO1: A graduate will be able to develop and deploy cloud-based solutions and apply best security practices.</td>
<td>I, R</td>
<td>I,R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>CS-LO2: A graduate will understand theoretical and practical aspects of distributed and mobile computing and will be able to develop mobile software solutions.</td>
<td>I, R</td>
<td></td>
<td>I,R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>CS-LO3: A graduate will be able to apply data science and machine learning techniques to practical problems in the area of big data.</td>
<td></td>
<td></td>
<td>I,R</td>
<td>I,R</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>CS-LO4: A graduate will have skills in business management, leadership, and technology innovation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I,R</td>
<td>I,R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I: Introduce
R: Reinforce
E: Enhance

Table 4: Where MSCS Program Learning Outcomes are Developed

Out-of-classroom Experiences:

The MSCS program provides the following ongoing opportunities for learning outside of the classroom. The content and context of the experience may vary, but the value-added learning is consistent within each category.

Practicum and/or research

The MSCS programs have an out-of-classroom requirement that is achieved through either a practicum or faculty advised research. With the practicum, students will work independently as individuals or in a team on a relatively large-scale project. This provides students the opportunity to reinforce and enhance their skills before graduation. This also offers the department the opportunity to obtain feedback from external stakeholders and indirectly measure the extent to which their needs are met and the learning objectives are achieved. The department maintains a portfolio of internships in which students have participated. Collectively, they support all of the MSCS learning outcomes.

With a research project, students will work on an independent basis under the supervision of a faculty member. Faculty members meet with students on a regular basis to track the progress of a research project. Production of published research is not required but is strongly encouraged.

Assessment of all out-of-classroom experiences are done on an annual basis, as described later.

Section 3) Venues for Assessing Learning Outcomes

The department uses both direct and indirect measures to monitor and assess the extent to which the learning outcomes are achieved.

Direct Assessment

Direct measurement of learning outcomes takes place in some of the required courses. Projects (individual or team), selected exercises, selected assignments, selected papers, selected exams or exam questions are used to assess student skills and knowledge.
Learning Outcomes/Courses

<table>
<thead>
<tr>
<th>Learning Outcomes/Courses</th>
<th>630</th>
<th>631</th>
<th>732</th>
<th>733</th>
<th>634</th>
<th>735</th>
<th>736</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-LO1: A graduate will be able to develop and deploy cloud-based solutions and apply best security practices.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CS-LO2: A graduate will understand theoretical and practical aspects of distributed and mobile computing and will be able to develop mobile software solutions.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CS-LO3: A graduate will be able to apply data science and machine learning techniques to practical problems in the area of big data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CS-LO4: A graduate will have skills in business management, leadership, and technology innovation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Table 5: Where MSCS Program Learning Outcomes are Assessed – Direct Measures

Indirect Assessment:

Indirect assessment of MSCS learning is achieved through practicum employer evaluations, graduate exit surveys, alumni surveys, and external program reviews.

Practicum Employer Evaluation

At the conclusion of a practicum, the practicum supervisor will complete and submit a written evaluation of the student’s academic and job skills preparation using a template supplied by the department which also allows non-structured comments by the supervisor. At the same time, the department conducts a site visit, where the intern will present a summary of their work and the faculty interviews the supervisor using a template developed by the department. The interview queries the supervisor about the relevance and effectiveness of the program’s curriculum in preparing the intern for the workforce. It also offers the supervisor a chance to reflect on how the program could enhance its curriculum and learning opportunities and to better prepare the graduates for the workforce. A copy of the templates are included in the appendix.

The artifact produced as part of a practicum is generally a proprietary product of the employer. However, supervisor evaluation, site visit report and the final internship report link back to the program learning outcomes and will be used as assessment artifacts.

Research Project Evaluation

At the conclusion of a research project, the faculty advisor will complete and submit a written evaluation using a template supplied by the department of the merits of the student’s research project. While the aim of a faculty/student research project is to produce an artifact that is presented at a conference and/or published in a research journal, this is not required. The artifacts produced as part of a research project will be used as assessment artifacts.

MSCS Exit Survey

The department administers the following annual exit survey to query students’ perception of their achievement of the program’s learning outcomes.
A graduate will be able to develop and deploy cloud-based solutions and apply best security practices.

A graduate will understand theoretical and practical aspects of distributed and mobile computing and will be able to develop mobile computing solutions and apply practical knowledge.

A graduate will be able to apply data science and machine learning techniques to practical problems in the area of big data.

A graduate will have skills in business management, leadership, and technology innovation.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Direct</th>
<th>Indirect</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-LO1: A graduate will be able to develop and deploy cloud-based solutions and apply best security practices.</td>
<td>Projects (individual or team), selected exercises, selected assignments, selected papers, selected exams or exam questions as determined in advance by the department</td>
<td>Practicum supervisor evaluation forms or faculty advisor evaluation of research project Practicum site visit evaluation forms Results of Alumni Surveys</td>
</tr>
<tr>
<td>CS-LO2: A graduate will understand theoretical and practical aspects of distributed and mobile computing and will be able to develop mobile software solutions.</td>
<td>Projects (individual or team), selected exercises, selected assignments, selected papers, selected exams or exam questions as determined in advance by the department</td>
<td>Practicum supervisor evaluation forms or faculty advisor evaluation of research project Practicum site visit evaluation forms Results of Alumni Surveys</td>
</tr>
<tr>
<td>CS-LO3: A graduate will be able to apply data science and machine learning techniques to practical problems in the area of big data.</td>
<td>Projects (individual or team), selected exercises, selected assignments, selected papers, selected exams or exam questions as determined in advance by the department</td>
<td>Practicum supervisor evaluation forms or faculty advisor evaluation of research project Practicum site visit evaluation forms Result of Alumni Surveys</td>
</tr>
</tbody>
</table>
Table 7: Summary of artifacts used for measurement of learning outcomes

| CS-LO4: A graduate will have skills in business management, leadership, and technology innovation. | Projects (individual or team), selected exercises, selected assignments, selected papers, selected exams or exam questions as determined in advance by the department | Practicum supervisor evaluation forms or faculty advisor evaluation of research project Practicum site visit evaluation forms Results of Alumni Surveys |

Section 4) Process for Assessment

The MSCS major does not have professional accreditation.

The primary stakeholders in the MSCS program are the students enrolled in these two programs and CSIS faculty. Secondary stakeholders are the companies and organizations that employ MSCS graduates, regional businesses, and UWRF.

Overall assessment cycle and accountability structure

MSCS uses a mix on on-going and periodic data collection across an annual cycle of assessment. Content of the assessment plan is developed by MSCS faculty based on discipline knowledge and recommendations from external stakeholders. The MSCS Assurance of Learning Plan [a.k.a. assessment plan] will be posted to the Assessment Section of the College of Business and Economics’ webpage. As part of the university’s assessment strategy, the plan will be posted to the campus’ assessment webpage.

The program uses a three-year/six-year assessment cycle. The term ‘year’ equates with the academic calendar. Assessment plans are developed/revised by the department faculty and in consultation with external stakeholders, and are submitted to the UWRF assessment committee once every three years as part of the six-year program review cycle. Periodic assessment results are produced by faculty and reviewed by the department every Semester and according to the assessment schedule described later in this document.

The faculty is responsible for identifying assessment artifacts relevant to program learning outcome, use these artifacts to measure the program learning outcomes and develop action plans [curriculum revision, process change, etc.]. The department chair, or the designated assessment coordinator is responsible for setting annual meeting, collecting and aggregating assessment data, helping faculty implement an action plan and generating assessment reports to be shared with the campus and community.

All reports, data supporting the reports, and actions taken as a result of the reports and processes will be documented and maintained electronically on the T drive and available for review by faculty and external stakeholders. A copy of the program’s assessment plan is posted to the UWRF and the College of Business and Economics webpages. Request by external stakeholders for assessment reports are to be made to the Chair of the CSIS program. The following is a summary of this overall process. The following is a summary of this overall process.
Figure 1: Overall Assessment Process: three-year report cycle, Six-year plan cycle

- *Every three years starting Fall 2017* – Develop/review Assessment Plan/reports and submit to campus
- *Every year starting Fall 2018* – Use assessment plan to assess and produce periodic reports in designated courses as identified by this plan and according to the set schedule described later in the document.
- *Every year starting Fall 2019 before October 15th* – Department will meet and review both the indirect and direct assessment results and identify areas of strength and areas that need improvement. A plan that documents what action needs to be taken [curriculum revision, process change, etc.] will be developed and shared with faculty for implementation.

Direct Assessment Process

All faculty participate in direct assessment. At the present time, only faculty are involved in the analysis of assessment data and the development of actions plans. The following is a summary of this process.

Figure 2: Direct assessment process – six-year cycle

a. Rubrics for direct assessment of learning outcomes are developed and approved by the department faculty and are loaded on the T drive by the CBE assessment coordinator.

b. The schedule for direct assessment of learning outcomes is presented in the following tables. Assessment
schedule for General Elective courses offered by the department is also presented. Variations to the schedule may occur due to course schedule changes.

<table>
<thead>
<tr>
<th>MSCS Assessment Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSIS 630</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>CSIS 631</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>CSIS 732</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>CSIS 733</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>CSIS 734</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>CSIS 735</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>CSIS 736</td>
</tr>
<tr>
<td>A/R</td>
</tr>
</tbody>
</table>

A: Assess
R: Report and review
I: Implement

c. Faculty teaching a course that is part of the assessment process will use the approved rubrics to assess learning outcome[s] related to that course and submit the results of their assessment.

d. Faculty will prepare an assessment report and submit it to the department chair, or the designated assessment coordinator, no later than the 15th day of the semester following the semester the course was assessed. The report will summarize the artifact[s] used to measure the major’s learning outcome[s], present findings, and make recommendations for enhancing student performance and/or the assessment process. Reports are housed on the T drive.

e. Before the end of each semester, the department chair, or the designated assessment coordinator, schedules an assessment meeting to review the assessment reports submitted by faculty during the previous semester. The central focus of the meeting will be for the faculty as a whole to discuss the individual faculty assessment report findings and recommendations from the prior academic semester. The faculty will identify areas of strength and areas that need improvement. A plan that documents what action needs to be taken [artifact change, curriculum revision, rubric revision, continued use and review of actions that have produced high quality, etc.] for each course will be developed and approved by the faculty. The action plan will clearly lay out what needs to be done, a date by which action is expected, who is responsible for the action, and the date by which the action plan is to be reassessed. A sample template is included in the appendix.

f. The department chair, or the designated assessment coordinator, will prepare minutes of the meeting.

g. No later than October 1st of each year the department chair, or the designated assessment coordinator, will prepare an aggregate assessment report of performance based on the common rubrics. The report will be shared with all faculty and will be housed on the program’s assessment section of the T drive. Plans are housed on the CBE web site under “assessment”. Requests for information on assessment reports will be handled by the department chair, or the designated assessment coordinator.

Indirect Assessment Process

The department chair, or the designated assessment coordinator, is responsible for collecting, summarizing and reporting results of the indirect assessment measures. Department faculty will be responsible for reviewing measurements and developing corresponding action plans in response. All reports, data supporting the reports, actions will be documented and maintained electronically by the department chair, or designated assessment coordinator and will be housed on the program’s assessment section of the T drive.

In addition to the alumni survey generated by the program, The CBE Assistant Dean for Assurance of Learning
administers a CBE alumni survey every three years. Feedback from this data is used as part of the program’s review process. The following is a summary of this process.

Figure 3: Indirect assessment processes and the corresponding cycles

Before the end of each academic year, the department chair, or the designated assessment coordinator, schedules an assessment meeting to review the results of indirect assessment from the previous year and the overall assessment plan. The central focus of the meeting will be for the faculty as a whole to discuss the results of internship evaluations, exit surveys, alumni survey or program reviews that took place during the previous academic year. The faculty will identify areas of strength and areas that need improvement. A plan that documents what action needs to be taken [curriculum revision, process change, etc.] will be developed. The department chair, or the designated assessment coordinator, will prepare minutes of the meeting.
Appendix

MSCS Practicum On-site Supervisor Evaluation Form

Practicum Site Visit Evaluation Form

University of Wisconsin, River Falls
College of Business and Economics
Department of Computer Science and Information Systems
Master of Science in Computer Science

Please complete the evaluation, comparing the graduate student to the job requirements or with other personnel assigned to similar duties. Please fax or mail the completed form to the address to the right.

Student’s Name: ____________________________

Organization/Business: ___

<table>
<thead>
<tr>
<th>ACADEMIC PREPARATION</th>
<th>JOB SKILLS PREPARATION</th>
<th>JUDGEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very well prepared</td>
<td>Very well prepared</td>
<td>Above average in making decisions</td>
</tr>
<tr>
<td>Adequate preparation</td>
<td>Adequate preparation</td>
<td>Average decision maker</td>
</tr>
<tr>
<td>Not sufficiently prepared</td>
<td>Not sufficiently prepared</td>
<td>Often uses poor judgement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RELATIONS WITH OTHERS</th>
<th>ATTITUDE</th>
<th>DEPENDABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Works well with others</td>
<td>Very interested and industrious</td>
<td>Above average in dependability</td>
</tr>
<tr>
<td>Gets along satisfactorily</td>
<td>Average in diligence and interest</td>
<td>Average dependability</td>
</tr>
<tr>
<td>Some difficulty working with others</td>
<td>Somewhat indifferent</td>
<td>Sometimes neglectful or careless</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABILITY TO LEARN</th>
<th>QUALITY OF WORK</th>
<th>AWARENESS OF ETHICAL ISSUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learns quickly</td>
<td>Very good</td>
<td>Above average</td>
</tr>
<tr>
<td>Average in learning</td>
<td>Average</td>
<td>Average</td>
</tr>
<tr>
<td>Rather slow to learn</td>
<td>Below average</td>
<td>Below average</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTENDANCE: Regular Irregular</th>
<th>PUNCTUALITY: Regular Irregular</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| OVERALL PERFORMANCE: Outstanding Very Good Average Marginal Unsatisfactory |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| | | | | |

GENERAL COMMENTS: __

This report has been discussed with student: Yes No

Would your organization/business be willing to host another UWRF MSCS graduate student? Yes No Possibly

Signed – Immediate Supervisor _________________________ Date _________________________
MSCS Practicum On-site Supervisor Evaluation Form

Research Project Evaluation Form

University of Wisconsin, River Falls
College of Business and Economics
Department of Computer Science and Information Systems
Master of Science in Computer Science

Please complete the evaluation of the merits of a graduate student’s research project.

Student’s Name: __

Title of Research Project: ___

ACADEMIC WRITING
• Very well prepared
• Adequate preparation
• Not sufficiently prepared

RELATIONS WITH OTHERS
• Works well with others
• Gets along satisfactorily
• Some difficulty working with others

ABILITY TO LEARN
• Learns quickly
• Average in learning
• Rather slow to learn

ACADEMIC MERIT
• Accept for publication
• Borderline
• Not acceptable

ATTITUDE
• Very interested and industrious
• Average in diligence and interest
• Somewhat indifferent

NOVELTY OF WORK
• Interesting new results
• A few new results
• No new results

JUDGEMENT
• Above average in research capacity
• Average research capacity
• Poor research capacity

DEPENDABILITY
• Above average in dependability
• Average dependability
• Sometimes neglectful or careless

AWARENESS OF ETHICAL ISSUES
• Above average
• Average
• Below average

ATTENDANCE AT MEETINGS: Regular Irregular

PUNCTUALITY: Regular Irregular

OVERALL PERFORMANCE: Outstanding Very Good Average Marginal Unsatisfactory

GENERAL COMMENTS: ___

This report has been discussed with student: Yes No

Do you plan to continue this research project? Yes No Possibly

Will you be extending the research produced by this project with another UWF MSCS graduate student? Yes No Possibly

Signed – Faculty Advisor ___________________________ Date ___________________________
MSCS Practicum Site Visit Evaluation Form

Practicum Site Visit Evaluation

Department of Computer Science and Information Systems
College of Business and Economics
University of Wisconsin, River Falls

<table>
<thead>
<tr>
<th>Graduate Student’s Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor Name:</td>
<td></td>
</tr>
<tr>
<td>Company Name:</td>
<td></td>
</tr>
<tr>
<td>Company Address:</td>
<td></td>
</tr>
<tr>
<td>Company Phone:</td>
<td></td>
</tr>
<tr>
<td>Number of Credits:</td>
<td></td>
</tr>
<tr>
<td>Date/time visit/call:</td>
<td></td>
</tr>
<tr>
<td>Visiting Faculty:</td>
<td></td>
</tr>
</tbody>
</table>

Supervisor Comments:

1. Please describe your perception of the graduate student’s academic preparation.

2. Please describe the graduate student’s communication skills (written/verbal).

3. How would you describe the graduate student’s teamwork skills?

4. Please describe the quality of work completed by the graduate student.

5. Please share any suggestions or recommendations for improving the work of the graduate student.
MSCS Alumni Survey

What academic area did your practicum fall under? (Select only one.)

- Software Engineering
- Distributed and Mobile Computing
- Information Security
- Enterprise and Cloud Computing
- Data Science and Big Data Analysis
- Machine Learning and Knowledge Discovery

What is your current status? (Select only one.)

- employed full time (if selected, Go to A)
- employed part time (if selected, Go to B)
- not employed (if selected, Go to C)
- continuing my education (if selected, Go to D)

A) If employed full time:

What is the name of your employer?

What is your job title?

Did the MSCS program help?

My annual salary is

- less than $40,000
- $40,000 - $60,000
- $60,000 - $80,000
- $80,000 - $100,000
- over $100,000

B) If not employed was selected:

What are your future plans?

Are you seeking full-time employment?

- Yes
- No

If so, what type of job are you looking for?
What is your expected salary?

- $less than $20,000
- $20,000 - $25,000
- $25,000 - $30,000
- $30,000 - $35,000
- $35,000 - $40,000
- $40,000 - $45,000
- over $45,000

Please pick which statement best describes employment opportunity?

- There are full-time jobs available and I will find one soon.
- There are full-time jobs available, but it is hard to find one.
- There are no full-time jobs available.

C) If continuing my education was selected:

What degree are you pursuing?

What is the name of the school you are attending or plan to attend?
Action Plan Template

<table>
<thead>
<tr>
<th>Action to be taken</th>
<th>Lead person</th>
<th>Date Due for Completion</th>
<th>Dissemination to</th>
<th>Review/Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>