Data Science Major
Assessment Plan
Fall 2017 - Spring 2019

Abbreviations used in this document

AACSB Association to Advance Collegiate Schools of Business
ACM Association for Computing Machinery
AIS Association of Information Systems
ASA American Statistical Association
AoL Assessment of Learning
CBE College of Business and Economics
CS Computer Science
CSIS Computer Science and Information Systems
DS Data Science
UWRF University of Wisconsin-River Falls

List of tables in this document

Table 1. DS program learning outcomes
Table 2. DS required courses
Table 3. Where DS program learning outcomes are developed
Table 4. Where DS Learning outcomes are assessed
Table 5. Artifacts that link to DS learning outcomes
Table 6. Data science assessment schedule

The Computer Science and Information Systems Department offers a Bachelor of Science degree in Data Science and Predictive Analytics (DS). The Data Science program provides students with a comprehensive understanding of the theory and scientific methods of analyzing data using computers. Students will develop the technical skills necessary to clean, analyze, and visualize massive datasets (referred to as “big data”), and to manage big data infrastructure technologies. Students will also develop the soft-skills needed to convey scientific insights to non-technical individuals. Graduates are expected to have the knowledge and skills needed to work in a related industry or go on to a graduate program in their corresponding field.
Section 1 - Program Learning Outcomes

Computer Science Program Mission and Learning Outcomes

Mission

Data science is inherently interdisciplinary. Working with data requires the mastery of a variety of skills and concepts, including many traditionally associated with the fields of computer science, statistics, and mathematics. Data science blends much of the pedagogical content from all three disciplines, but it is neither the simple intersection, nor the superset of the three.

The mission of the DS program is to prepare graduates with skills in current analysis tools and methodologies to allow them to analyze and develop data science solutions, and to manage big data infrastructure technologies. This program is grounded in understanding of the theory and methods of data science.

Students in the DS program are expected to acquire knowledge of current data analysis tools, develop skills in data analysis and visualization, and are expected to develop professional skills needed to work in industry or go on to a graduate program.

Learning Outcomes

The following tables lists the learning outcomes expected from every DS graduate. All learning outcomes are measurable and the artifacts used for measurements are described later in this document (see Tables 4 and 5).

DS Program Learning Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-L01</td>
<td>A graduate will be able to utilize computational techniques, such as object-orientated programming, to analyze, design and develop software applications.</td>
</tr>
<tr>
<td>DS-L02</td>
<td>A graduate will be able to apply statistical techniques required for analysis, data collection, modeling, and inference</td>
</tr>
<tr>
<td>DS-L03</td>
<td>A graduate will be able to choose, fit, and apply mathematical models</td>
</tr>
<tr>
<td>DS-L04</td>
<td>A graduate will be able to build and assess statistical and machine learning models, employ inferencing, and draw conclusions</td>
</tr>
<tr>
<td>DS-L05</td>
<td>A graduate will be able to clean, prepare, and work with data from a variety of sources, including databases.</td>
</tr>
<tr>
<td>DS-L06</td>
<td>A graduate will possess the communication skills needed to verbalize and visualize data scientific findings</td>
</tr>
</tbody>
</table>

Learning Outcomes and External Stakeholders

Data Science

In 2016, the American Statistical Association published its curricular recommendations for undergraduate data science program. A copy of the recommendation report has been placed the UWRF
network T: drive. These recommendations are, to our knowledge, the first official DS curricular recommendations of any computing, mathematical, or statistical association. To address the needs of external stakeholders, the DS program learning outcomes will be aligned, where applicable, with the ASA’s DS curricular recommendations.

Learning Outcomes and UWRF Strategic Goals

Distinctive Academic Excellence

Periodic review of undergraduate courses ensure they meet and exceed the recommendations of the three major professional societies in the field: The American Statistical Association, The Association for Computing Machinery (ACM), and the Mathematical Association of America.

Technology-enhanced classrooms facilitate the teaching of undergraduate courses. These spaces promote hands-on, interactive learning to meet DS program objectives. The use of technology-enhanced classrooms affects all DS learning outcomes.

A strong internship program and an active chapter of ACM offers opportunities for students to be engaged in out-of-classroom learning activities. These supports the UWRF’s strategic initiatives related to Active Learning (DS-L01, DS-L05, and DS-L06; see Table 1).

In support of UWRF’s strategic initiatives related to undergraduate research, department students and faculty are actively engaged in research and publication.

Global Education and Engagement

There are no learning outcomes related to global education and engagement. This is due to the technical nature of the discipline. However, data science is an international discipline with an evolving set of international standards.

Data scientists routinely work with interdisciplinary, international teams to achieve collaborative objectives. As such, graduates have the opportunity for global and interconnected engagement. In addition, the department offers the opportunity for global education through exchange programs.

Innovation and Partnerships

Department partnerships with Microsoft and IBM enhance student skill development. These partnerships were a catalyst for the development of the department’s DS learning outcomes. The CSIS department is a member of the Microsoft Developer Network Academic Alliance (MSDNAA). This alliance provides students with free access to Microsoft operating systems and software development products. The department also works with IBM’s Academic Initiative, giving students access to software and curriculum materials from IBM. These partnerships affect all DS learning outcomes.

In addition, the department has a healthy number of students that who are engaged in internship activities (DS-L01, DS-L05, and DS-L06; see Table 1).
Section 2 - Where Learning Outcomes Are Being Achieved

Learning outcomes are achieved in the classroom, as well as through either an internship or a Capstone project. In addition, out-of-classroom and extracurricular activities are used to continually engage student learning. The following sections list the required courses for the DS program and out-of-classroom/extracurricular activities. Connections to learning outcomes are highlighted.

Course Work

Data Science required courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSIS 161</td>
<td>Programming I</td>
<td>3</td>
</tr>
<tr>
<td>CSIS 162</td>
<td>Programming II</td>
<td>3</td>
</tr>
<tr>
<td>CSIS 215</td>
<td>Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSIS 225</td>
<td>Web Development</td>
<td>3</td>
</tr>
<tr>
<td>CSIS 235</td>
<td>Object Oriented Programming</td>
<td>3</td>
</tr>
<tr>
<td>CSIS 237</td>
<td>Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>CSIS 239</td>
<td>Introduction to Data Science</td>
<td>3</td>
</tr>
<tr>
<td>CSIS 333</td>
<td>Database Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>CSIS 334</td>
<td>Data Visualization</td>
<td>3</td>
</tr>
<tr>
<td>CSIS 339</td>
<td>Advanced topics in Data Science</td>
<td>3</td>
</tr>
<tr>
<td>CSIS 452</td>
<td>Applied Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td>CSIS 488 OR</td>
<td>Capstone Data Science Practicum Project</td>
<td>3</td>
</tr>
<tr>
<td>CSIS 379</td>
<td>Internship in Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 166</td>
<td>Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 167</td>
<td>Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 236</td>
<td>Discrete Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 256</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MATH 326</td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
<tr>
<td>MATH 327</td>
<td>Applied Regression Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ECON 426</td>
<td>Econometrics</td>
<td>3</td>
</tr>
</tbody>
</table>
Data Science Map of Learning Outcomes

The following table shows where DS program learning outcomes are developed. The program does not assess at different levels, rather the program engages in selective assessment. Related courses are grouped as they share learning outcomes.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Course Code</th>
<th>161</th>
<th>162</th>
<th>166</th>
<th>167</th>
<th>215</th>
<th>225</th>
<th>235</th>
<th>237</th>
<th>236</th>
<th>239</th>
<th>326</th>
<th>327</th>
<th>333</th>
<th>334</th>
<th>339</th>
<th>426</th>
<th>452</th>
<th>488</th>
<th>379</th>
<th>ASA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A graduate will be able to utilize computational techniques, such as object-orientated programming, to analyze, design and develop software applications.</td>
<td>I R E</td>
<td></td>
</tr>
<tr>
<td>A graduate will be able to apply statistical techniques required for analysis, data collection, modeling, and inference</td>
<td></td>
<td>I</td>
<td>R,E</td>
<td>E</td>
<td>R</td>
<td>R,E</td>
<td>E</td>
</tr>
<tr>
<td>A graduate will be able to choose, fit, and apply mathematical models</td>
<td>I R R,E E</td>
<td></td>
</tr>
<tr>
<td>A graduate will be able to build and assess statistical and machine learning models, employ inferencing, and draw conclusions</td>
<td></td>
<td>I</td>
<td>E</td>
<td>R,E</td>
<td>E</td>
<td>R,E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>A graduate will be able to clean, prepare, and work with data from a variety of sources, including databases.</td>
<td></td>
<td>I</td>
<td>R</td>
<td>R,E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>A graduate will possess the communication skills needed to verbalize and visualize data scientific findings</td>
<td></td>
<td>I</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

I: Introduced
R: Reinforced
E: Enhanced

Out-of-classroom Experiences:

The DS program provides ongoing opportunities for enhanced learning outside of the classroom. The content and context of the experience may vary, but value-added learning is consistent within each category. The out-of-classroom requirement is achieved through either the capstone data science practicum (CSIS 488) or the computer science internship (CSIS 379). In these courses, students work outside of the classroom as individuals on an independent research project, or as members of a team working on a large-scale project. Out-of-classroom experiences are assessed on an annual basis, as described in Section 3.
Internship – CSIS 379

This out-of-classroom experience provides students with the opportunity to reinforce and enhance their team skills before graduation. This course also offers the department an opportunity to obtain feedback from external stakeholders and indirectly measure the extent to which their needs are met and the learning objectives are achieved. The department maintains a portfolio of internships in which students have participated.

Capstone – CSIS 488

This course provides students with the opportunity to enhance their critical thinking skills by pursuing an independent research project under the advisement of a faculty member. This course offers the department an opportunity to achieve UWRF’s strategic initiative of engaging undergraduate research.

Section 3) Venues for Assessing Learning Outcomes

The department uses both direct and indirect measures to assess how learning outcomes are being achieved.

Direct Assessment

A subset of required DS courses are used to directly assess and quantify student-learning outcomes. Measures take the form of student grades on select class projects (individual or team), exercises, assignments, papers, exams, and exam questions. These direct measures are used to quantify student skills and knowledge, and the degree to which DS learning outcomes are being met.

Data Science Direct Assessment Map

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A graduate will be able to utilize computational techniques, such as object-orientated programming, to analyze, design and develop software applications.</td>
<td>X</td>
</tr>
<tr>
<td>A graduate will be able to apply statistical techniques required for analysis, data collection, modeling, and inference</td>
<td>X X</td>
</tr>
<tr>
<td>A graduate will be able to choose, fit, and apply mathematical models</td>
<td>X X</td>
</tr>
<tr>
<td>A graduate will be able to build and assess statistical and machine learning models, employ inferencing, and draw conclusions</td>
<td>X</td>
</tr>
<tr>
<td>A graduate will be able to clean, prepare, and work with data from a variety of sources, including databases.</td>
<td>X</td>
</tr>
<tr>
<td>A graduate will possess the communication skills needed to verbalize and visualize data scientific findings</td>
<td>X</td>
</tr>
</tbody>
</table>
Indirect Assessment

Learning outcomes are indirectly assessed through a combination of internship employer evaluations, senior exit surveys, alumni surveys, and external program reviews.

Internship Employer Evaluation

At the conclusion of an internship, the internship supervisor will submit a standardized evaluation form that assesses the intern’s academic and job skills preparation. The evaluation form is supplied by the Department and allows for both structured feedback and non-structured comments. In addition, the Department conducts an on-site visit at the location of the internship. During the visit, the intern will present a summary of their work to a faculty member. A copy of the template is included in Appendix A.

The faculty member will also interview the internship supervisor using a standardized assessment template supplied by the Department. The interview documents the supervisor’s opinions on the relevance and effectiveness of the program’s curriculum in preparing the intern for the workforce. The interview also offers the internship supervisor a chance to reflect on how the program could enhance its curriculum and learning opportunities to better prepare the graduates for the workforce. A copy of the template is included in Appendix B.

The artifact produced during a student’s internship, typically software or documentation, is generally a proprietary product of the employer and is not directly assessable. Because of this, the intern supervisor evaluation form, site visit interview form, and the final internship report link are used as assessment artifacts. These artifacts link directly to program learning outcomes.

Assessment Surveys

The department administers the following annual senior exit survey to query students’ perception of their achievement of the program’s learning outcomes. The survey asks the student to evaluate multiple aspects of the program. The DS Senior Exit Survey evaluates these measures on a 5-point Likert scale ranging from Strongly Disagree (1) to Strongly Agree (5).

DS Senior Exit Survey

For each question below, circle the response that best characterizes how you feel about the statement, where 1 = Strongly Agree, 2 = Agree, 3 = Neither agree nor disagree, 4 = Disagree, 5 = Strongly Disagree.

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>A graduate will be able to utilize computational techniques, such as object-orientated programming, to analyze, design and develop software applications.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>A graduate will be able to apply statistical techniques required for analysis, data collection, modeling, and inference</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
A graduate will be able to choose, fit, and apply mathematical models

A graduate will be able to build and assess statistical and machine learning models, employ inferencing, and draw conclusions

A graduate will be able to clean, prepare, and work with data from a variety of sources, including databases.

A graduate will possess the communication skills needed to verbalize and visualize data scientific findings

Alumni Survey

Every three years, the department administers an electronic survey to its graduates from the past five years. The survey queries the graduates about the relevance and effectiveness of the program’s curriculum in preparing them for their initial job and their current position, which relates back to their achievement of program outcomes. A copy of the survey is included in Appendix C.

Program Review and Alignment

External Program Reviews

Every six years, the department conducts an external review of its programs. During this review, a senior CSIS faculty from another peer institution will visit the campus and offer feedback related to the effectiveness of department’s curriculum, resources and its facilities, which relates back to their achievement of program outcomes.

ASA Curricular Alignment

In 2016, the ASA published the first official curricular recommendations for undergraduate data science programs. The department has reviewed the ASA curricular recommendations and has realigned its DS curriculum accordingly. This realignment has a direct impact on program learning outcomes and the needs of external stakeholders. The DS curricula will be periodically aligned with the ASA guidelines, when updated ASA recommendations are released.

Artifact Summary for Assessment of DS Learning Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Direct Measure</th>
<th>Indirect Measure</th>
</tr>
</thead>
</table>
| A graduate will be able to utilize computational techniques, such as object-orientated programming, to analyze, design and develop software applications. | • Projects (individual or team)
• Selected exercises
• Selected assignments
• Selected papers
• Selected exams or exam questions | • Internship supervisor evaluation forms
• Internship site visit evaluation forms
• Results of Alumni Surveys
• ASA Curricular recommendations
• Student Exit Survey |
| A graduate will be able to apply statistical techniques required for analysis, data collection, modeling, and inference | Projects (individual or team)
Selected exercises
Selected assignments
Selected papers
Selected exams or exam questions as determined in advance by the department | Internship supervisor evaluation forms
Internship site visit evaluation forms
Results of Alumni Surveys
ASA Curricular recommendations
Student Exit Survey
Portfolio of attendance and results of programming contests |
|---|---|---|
| A graduate will be able to choose, fit, and apply mathematical models | Projects (individual or team)
Selected exercises
Selected assignments
Selected papers
Selected exams or exam questions as determined in advance by the department | Internship supervisor evaluation forms
Internship site visit evaluation forms
Results of Alumni Surveys
ASA Curricular recommendations
Student Exit Survey
Portfolio of attendance and results of programming contests |
| A graduate will be able to build and assess statistical and machine learning models, employ inferencing, and draw conclusions | Projects (individual or team)
Selected exercises
Selected assignments
Selected papers
Selected exams or exam questions as determined in advance by the department | Internship supervisor evaluation forms
Internship site visit evaluation forms
Results of Alumni Surveys
ASA Curricular recommendations
Student Exit Survey
Portfolio of attendance and results of programming contests |
| A graduate will be able to clean, prepare, and work with data from a variety of sources, including databases. | Projects (individual or team)
Selected exercises
Selected assignments
Selected papers
Selected exams or exam questions as determined in advance by the department | Internship supervisor evaluation forms
Internship site visit evaluation forms
Results of Alumni Surveys
ASA Curricular recommendations
Student Exit Survey
Portfolio of attendance and results of programming contests |
| A graduate will possess the communication skills needed to verbalize and visualize data scientific findings | Projects (individual or team)
Selected exercises
Selected assignments
Selected papers
Selected exams or exam questions as determined in advance by the department | Internship supervisor evaluation forms
Internship site visit evaluation forms
Results of Alumni Surveys
ASA Curricular recommendations
Student Exit Survey
Portfolio of attendance and results of programming contests |
Section 4 - Process for Assessment

The Data Science major does not have professional accreditation.

The primary stakeholders in the DS program are the students enrolled in the DS program and CSIS faculty. Secondary stakeholders are the companies and organizations that employ DS graduates, regional businesses, UWRF and the ASA.

Assessment Cycle and Accountability Structure

CSIS uses a mix of on-going and periodic data collection across an annual cycle of assessment. The assessment plan is developed by CSIS faculty and is based on discipline knowledge and recommendations of the ASA. The CSIS Assurance of Learning Plan [AKA: assessment plan] will be posted to the Assessment Section of the College of Business and Economics’ webpage. As part of the university’s assessment strategy, the plan will be posted to the campus’ assessment webpage.

The program uses a three-year/six-year assessment cycle. The term ‘year’ equates with the academic calendar. Assessment plans are developed/revised by the department faculty and in consultation with external stakeholders. Approved plans are submitted to the UWRF assessment committee once every three years as part of the six-year program review cycle. Periodic assessment results are produced by faculty and reviewed by the department every Semester and according to the assessment schedule described later in this document.

The faculty is responsible for identifying assessment artifacts relevant to program learning outcomes. Faculty use of these artifacts to measure program learning outcomes and to develop corresponding action plans [curriculum revision, process change, etc.]. The department chair, or the designated assessment coordinator is responsible for setting an annual assessment meeting, collecting and aggregating assessment data, helping faculty implement an action plan, and generating assessment reports to be shared with the campus and community.

All reports, data supporting the reports, and actions taken as a result of the reports and processes are documented electronically on the UWRF network T:\ drive. These documents are available for review by faculty and external stakeholders. A copy of the program’s assessment plan is posted to both the UWRF webpage and the College of Business and Economics webpage. Requests by external stakeholders for assessment reports are to be made to the Chair of the CSIS department.
Overall Assessment

The following is a summary of the overall assessment process and timeline.

Process Cycle

Overall Assessment Process: Three-year cycle, Six-year plan

Develop/revise assessment
Plan submit plan/report to campus

Use assessment plan
Produce periodic reports
Aggregate annual reports to submit at the end of report cycle

Process Timeline

1. Every three years starting Fall 2017 – Develop/review Assessment Plan/reports and submit to campus

2. Every year starting Fall 2017 – Use assessment plan to assess and produce periodic reports in designated courses as identified by this plan and according to the set schedule described later in the document.

3. Every year starting Fall 2018 before October 15th – Department will meet and review both the indirect and direct assessment results and identify areas of strength and areas that need improvement. A plan that documents what action needs to be taken [curriculum revision, process change, etc.] will be developed and shared with faculty for implementation.

Direct Assessment

All faculty participate in direct assessment. At the present time, only faculty are involved in the analysis of assessment data and the development of actions plans. The following is a summary of the direct process and timeline.
Process Cycle

Direct Assessment Process: Six-year cycle

- Develop/Revise Rubrics
- Assess Using Rubrics
- Review and recommend changes
- Implement recommendations
- Report Assessment Results
- Review and recommend changes

Process Structure

a. Rubrics used in the direct assessment of DS learning outcomes are developed and approved by the department faculty and are loaded on the T:\ drive by the CBE assessment coordinator.

b. A schedule for the direct assessment of DS learning outcomes is presented in the following table. Assessment schedules for General Elective courses offered by the department, and College Level courses offered by the college are also presented. Variations to these schedules may occur due to course schedule changes.

<table>
<thead>
<tr>
<th>Table 6. Data science assessment schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
</tr>
<tr>
<td>CSIS 235</td>
</tr>
<tr>
<td>CSIS 239</td>
</tr>
<tr>
<td>CSIS 333</td>
</tr>
<tr>
<td>CSIS 334</td>
</tr>
<tr>
<td>CSIS 339</td>
</tr>
<tr>
<td>CSIS 452</td>
</tr>
</tbody>
</table>

A: Assess
R: Report and Review
I: Implement
c. Faculty members teaching a course under assessment will use the approved rubrics to assess learning outcome[s]. Faculty members will submit the results of their assessment.

d. Faculty members will prepare an assessment report and submit it to the department chair, or the designated assessment coordinator, no later than the 15th day of the semester following the semester the course was assessed. The report will summarize the artifact[s] used to measure the major’s learning outcome[s], present findings, and make recommendations for enhancing student performance and/or the assessment process. Reports are housed on the T:\ drive.

e. Before the end of each semester, the department chair or the designated assessment coordinator, schedules an assessment meeting to review the assessment reports submitted by faculty during the previous semester. The meeting allows faculty to discuss the individual assessment reports and recommendations from the previous academic semester. Faculty members will identify areas of strength and those areas needing improvement. A plan that documents what action needs to be taken [artifact change, curriculum revision, rubric revision, continued use and review of actions that have produced high quality outcomes, etc.] for each course will be developed and approved by the faculty. The action plan will clearly lay out what needs to be done, a date by which action is expected, who is responsible for the action, and the date by which the action plan is to be reassessed. A sample template is included in Appendix D.

f. The department chair, or the designated assessment coordinator, will prepare minutes of the meeting.

g. The department chair, or the designated assessment coordinator, will prepare an aggregate assessment report of performance based on the common rubrics no later than October 1st of each year. The report will be shared with all faculty and will be housed on the program’s assessment section of the T:\ drive. Plans are housed on the CBE web site under “assessment”. Requests for information on assessment reports will be handled by the department chair, or the designated assessment coordinator.

Indirect Assessment Process

The department chair, or the designated assessment coordinator, is responsible for collecting, summarizing, and reporting results of the indirect assessment measures. Department faculty will be responsible for reviewing measurements and developing response action plans. All reports, data supporting the reports, and actions taken will be documented and maintained electronically by the department chair, or designated assessment coordinator and will be housed on the program’s assessment section of the T:\ drive.
In addition to the alumni survey generated by the program, The CBE Assistant Dean for Assurance of Learning administers a CBE alumni survey every three years. Feedback from this data is used as part of the program’s review process. In addition, the DS curricula will be periodically aligned with the ASA guidelines, when updated ASA recommendations are released.

Before the end of each academic year, the department chair, or the designated assessment coordinator, schedules an assessment meeting to review the results of indirect assessment from the previous year and to review the overall assessment plan. The central focus of the meeting will be for the faculty as a whole to discuss the results of internship evaluations, exit surveys, alumni survey or program reviews that took place during the previous academic year. The faculty will identify areas of strength and areas that need improvement. A plan that documents what action needs to be taken [curriculum revision, process change, etc.] will be developed. The department chair, or the designated assessment coordinator, will prepare minutes of the meeting.
Appendices

Appendix A – DS Internship On-site Supervisor Evaluation Form

UNIVERSITY OF WISCONSIN-RIVER FALLS
COLLEGE OF BUSINESS AND ECONOMICS
INTERNSHIP PROGRAM-EMPLOYER EVALUATION
Evaluation by immediate on-site supervisor of the student intern.

Please complete the evaluation, comparing the intern to the job requirements or with other personnel assigned similar duties. Please fax or mail the completed form to the address at the right:

Internship Manager
CBE, 23A South Hall
University of Wisconsin-River Falls
410 S. Third Street
River Falls, WI 54022
Phone: (715) 425-3335
Fax: (715) 425-0707

Student's Name:

Organization/Business:

<table>
<thead>
<tr>
<th>APPEARANCE</th>
<th>SELF CONFIDENCE</th>
<th>EMOTIONAL MATURITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Very well groomed</td>
<td>0 Well-poised</td>
<td>0 Well-adjusted</td>
</tr>
<tr>
<td>0 Presentable</td>
<td>0 Usually confident</td>
<td>0 Somewhat unstable</td>
</tr>
<tr>
<td>0 Poorly groomed</td>
<td>0 Appears insecure</td>
<td>0 Exitable and erratic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACADEMIC PREPARATION</th>
<th>JOB SKILLS PREPARATION</th>
<th>JUDGMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Very well prepared</td>
<td>0 Very well prepared</td>
<td>0 Above average in making decisions</td>
</tr>
<tr>
<td>0 Adequate preparation</td>
<td>0 Adequate preparation</td>
<td>0 Average decision maker</td>
</tr>
<tr>
<td>0 Not sufficiently prepared</td>
<td>0 Not sufficiently prepared</td>
<td>0 Often uses poor judgment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RELATIONS WITH OTHERS</th>
<th>ATTITUDE</th>
<th>DEPENDABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Works well with others</td>
<td>0 Very interested and industrious</td>
<td>0 Above average in dependability</td>
</tr>
<tr>
<td>0 Gets along satisfactorily</td>
<td>0 Average in diligence and interest</td>
<td>0 Average dependability</td>
</tr>
<tr>
<td>0 Some difficulty working with others</td>
<td>0 Somewhat indifferent</td>
<td>0 Sometimes neglectful or careless</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABILITY TO LEARN</th>
<th>QUALITY OF WORK</th>
<th>AWARENESS OF ETHICAL ISSUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Learns quickly</td>
<td>0 Very good</td>
<td>0 Above average</td>
</tr>
<tr>
<td>0 Average in learning</td>
<td>0 Average</td>
<td>0 Average</td>
</tr>
<tr>
<td>0 Rather slow to learn</td>
<td>0 Below average</td>
<td>0 Below average</td>
</tr>
</tbody>
</table>

ATTENDANCE:

- Regular
- Irregular

PUNCTUALITY:

- Regular
- Irregular

OVERALL PERFORMANCE:

- Outstanding
- Very Good
- Average
- Marginal
- Unsatisfactory

GENERAL COMMENTS:

This report has been discussed with student: Yes ____ No __

Would your organization/business be willing to host another UWRF intern? Yes ____ No ____ Possibly ____

Signed - Immediate Supervisor ____________________________

Date: ________________

Internship Site Visit Evaluation
Department of Computer Science and Information Systems
College of Business and Economics
University of Wisconsin, River Falls

Intern Name:
Supervisor Name:
Company Name:
Company Address:
Number of Credits:
Company Phone:
Date/time visit/call:
Visiting Faculty:

Supervisor Comments:
1. Please describe your perception of the intern's academic preparation.

2. Please tell me about the intern's communication skills (written/verbal).

3. How would you describe the intern's teamwork skills?

4. Please describe the quality of work completed by the intern.

5. Please share any suggestions or recommendations for improving the intern's work.
Appendix C – CSIS Alumni Survey

What was your academic major? Select one option. If you have more than one major, select only your first major.

- Accounting
- Business Administration
- Computer Science
- Data Science
- Economics
- Finance
- Information Systems
- Marketing
- Management

What is your current status? Select one option.

- Employed full time (if selected, Go to A)
- Employed part time (if selected, Go to B)
- Not employed (if selected, Go to C)
- Continuing my education (if selected, Go to D)

A) If Employed Full Time was selected

What is the name of your employer?

What is your job title?

My annual salary is

- less than $20,000
- $20,000 - $25,000
- $25,000 - $30,000
- $30,000 - $35,000
- $35,000 - $40,000
- $40,000 - $45,000
- $45,000 - $50,000
- over $50,000

B) If Employed Part Time was selected

Who is your Employer?

Are you seeking full time employment?

- Yes
- No
C) If not Employed was selected

What are your future plans?

Are you seeking full-time employment?

☐ Yes
☐ No

What type of job are you looking for?

What is your expected salary?

☐ less than $20,000
☐ $20,000 - $25,000
☐ $25,000 - $30,000
☐ $30,000 - $35,000
☐ $35,000 - $40,000
☐ $40,000 - $45,000
☐ over $45,000

Please pick which statement best describes employment opportunity?

☐ There are full-time jobs available and I will find one soon.
☐ There are full-time jobs available, but it is hard to find one.
☐ There are no full-time jobs available.

D) If Continuing my Education was selected

What degree are you pursuing?

What is the name of the school you are attending or plan to attend?
Appendix D – Action Plan Template

<table>
<thead>
<tr>
<th>Action to be taken</th>
<th>Lead person</th>
<th>Date due for completion</th>
<th>Dissemination to</th>
<th>Review/Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>